Gold complexes with selenium ligands 3. Cationic gold(I) complexes with phosphine selenide ligands

Peter G. Jones and Carsten Thöne

Institut für Anorganische und Analytische Chemie der Technischen Universität, Hagenring 30, 3300 Braunschweig (F.R.G.)

(Received August 17, 1990; revised January 28, 1991)

Abstract

The cationic gold complexes $[(Ph_3PSe)_2Au]^+$ (1) and $[(Ph_3P)Au(SePPh_3)]^+$ (2) are obtained in good yield as their SbF₆⁻ salts from the appropriate reaction between LAuCl, AgSbF₆ and L'. Attempts to prepare other cationic complexes $[L'Au(SePPh_3)]^+$ (where L'' is a phosphine other than PPh_3) led to some decomposition to metallic gold, and concomitantly poorly characterised or uncharacterised products, but the isolation in low yield of $[(Ph_3P)Au(SePPhMe_2)]^+$ (3) from a corresponding reaction with Ph_3PSe and PhMe_2PAuCl demonstrates that sclenium is exchanged between phosphines. Complexes 1 and 3 were characterised by X-ray structure determination; complex 2 is severely disordered.

Introduction

We have recently begun a systematic investigation of gold complexes with selenium ligands [1, 2]. Here we describe attempts to prepare cationic gold(I) complexes involving the ligand triphenylphosphine selenide, Ph_3PSe . The preparation and structure of $Ph_3PSeAuCl$ have already been described [3].

Experimental

X-ray structure determination of compound 1 Crystal data

C₃₆H₃₀AuF₆P₂SbSe₂, M = 1114.7, triclinic, $P\bar{1}$, a = 13.058(2), b = 10.589(2), c = 14.047(3) Å, $\alpha = 89.60(2)$, $\beta = 86.77(2)$, $\gamma = 72.23(2)^{\circ}$, U = 1846.7 Å³, Z = 2, $D_x = 2.00$ Mg m⁻³, λ (Mo K α) = 0.71069 Å, $\mu = 6.6$ mm⁻¹, F(000) = 1056, T = 18 °C.

Data collection and reduction

A colourless prism $0.35 \times 0.2 \times 0.2$ mm was mounted in a glass capillary. A total of 9319 intensities were measured on a Stoe-Siemens four-circle diffractometer using monochromated Mo K α radiation $(2\theta_{max} = 50^{\circ})$. An absorption correction based on ψ -scans was applied (transmissions 0.80-0.92). Averaging equivalents gave 6499 unique reflections (R_{int} 0.018), of which 5328 with $F > 4\sigma(F)$ were used for all calculations (program system XLS, written by G. M. Sheldrick). Cell constants were refined from 2θ values of 52 reflections in the range 20-23°.

Structure solution and refinement

The structure was solved by the heavy-atom method and subjected to anisotropic full-matrix least-squares refinement on F. H atoms were included using a riding model. The final R value was 0.029, with R_w 0.026. The weighting scheme was $w^{-1} = \sigma^2(F) + gF^2$, with g = 0.0001. 433 parameters; S = 1.4; max. Δ/σ = 0.001; max. $\Delta \rho = 0.6$ eÅ⁻³. Final atom coordinates are given in Table 1, with derived bond lengths and angles in Table 2.

Attempted X-ray structure determination of compound 2

The apparent cell is I-centred tetragonal, with cell constants (at room temperature) a = 14.323, c = 17.530 Å, Z = 4. An ordered structure is inconsistent with the Z value; the structure appears to be severely disordered, with triphenylphosphine ligands defining a cage within which no single chemically sensible arrangement of heavy atoms could be distinguished. A check for possible halved axes or incorrect Laue symmetry proved negative.

X-ray structure determination of compound 3 Crystal data

C₂₆H₂₆AuF₆P₂SbSe, M = 912.1, triclinic, PI, a = 10.195(6), b = 10.800(6), c = 13.661(8) Å, $\alpha = 98.47(5)$, $\beta = 102.49(4)$, $\gamma = 93.46(4)^{\circ}$, U = 1446 Å³, Z = 2, $D_x = 2.10$ Mg m⁻³, μ (Mo K α) = 7.3 mm⁻¹, F(000) = 860, T = -95 °C.

TABLE 1. Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement parameters $(\AA^2\times 10^3)$ for compound 1

	x	у	z	$U_{ m eq}$ a
Au(1)	1746.2(2)	712.4(2)	4205.2(1)	44(1)
Se(1)	29.5(4)	492.2(6)	3874.0(3)	52(1)
Se(2)	3464.6(4)	731.5(5)	4696.3(4)	54(1)
P(1)	168.6(9)	205(1)	2335.3(8)	37(1)
C(111)	- 1108(4)	45(4)	2043(3)	42(2)
C(112)	-1731(4)	849(5)	1385(3)	49(2)
C(113)	-2713(4)	706(6)	1198(4)	65(2)
C(114)	-3078(5)	-224(7)	1647(5)	70(3)
C(115)	-2465(5)	-1028(6)	2307(5)	74(3)
C(116)	-1483(4)	- 906(5)	2504(4)	61(2)
C(121)	1192(4)	-1268(4)	1898(3)	42(2)
C(122)	992(4)	- 1976(5)	1133(3)	54(2)
C(123)	1803(5)	-3036(6)	734(4)	69(3)
C(124)	2814(5)	- 3386(6)	1087(5)	74(3)
C(125)	3011(5)	-2697(6)	1842(5)	79(3)
C(126)	2202(4)	- 1640(5)	2260(4)	58(2)
C(131)	405(3)	1602(5)	1719(3)	41(2)
C(132)	1087(4)	1407(5)	912(4)	59(2)
C(133)	1264(5)	2475(7)	451(5)	73(3)
C(134)	773(5)	3731(7)	792(5)	76(3)
C(135)	76(6)	3932(6)	1570(5)	89(3)
C(136)	-105(5)	2864(5)	2044(4)	70(3)
P(2)	3675(1)	2389(1)	3872.5(8)	40(1)
C(211)	3877(4)	2077(5)	2602(3)	43(2)
C(212)	3731(4)	951(5)	2211(4)	57(2)
C(213)	3883(5)	756(7)	1231(4)	74(3)
C(214)	4198(5)	1651(7)	659(4)	73(3)
C(215)	4359(5)	2743(6)	1046(4)	64(2)
C(216)	4207(4)	2962(5)	2026(3)	55(2)
C(221)	4894(4)	2629(4)	4267(3)	40(2)
C(222)	5850(4)	2087(6)	3760(4)	58(2)
C(223)	6803(4)	2143(7)	4089(4)	71(3)
C(224)	6811(5)	2758(6)	4936(5)	65(3)
C(225)	5857(5)	3301(7)	5453(5)	81(3)
C(226)	4908(4)	3242(6)	5122(4)	66(2)
C(231)	2537(3)	3870(5)	4073(3)	44(2)
C(232)	2115(4)	4212(6)	5013(4)	59(2)
C(233)	1257(5)	5336(6)	5181(5)	72(3)
C(234)	799(5)	6125(6)	4451(6)	76(3)
C(235)	1196(5)	5773(6)	3528(5)	75(3)
C(236)	2067(4)	4657(5)	3338(4)	62(2)
Sb	3492.7(3)	4471.6(4)	8169.1(2)	53(1)
F(1)	4497(3)	4816(4)	7295(3)	103(2)
F(2)	2540(3)	4131(5)	9075(3)	129(3)
F(3)	2664(4)	4208(5)	7231(3)	131(3)
F(4)	4363(4)	4703(6)	9114(3)	137(3)
F(5)	4261(3)	2696(4)	8134(4)	133(3)
F(6)	2748(4)	6235(4)	8235(4)	147(3)

^aEquivalent isotropic U defined as one third of the trace of the orthogonalised U_{ii} tensor.

Data collection and reduction

A colourless tablet $0.35 \times 0.2 \times 0.08$ mm was mounted in inert oil and transferred to the cold gas stream of the diffractometer (Siemens R3 with LT-2 low temperature attachment). A total of 6044

TABLE 2. Selected bond lengths (Å) and angles (°) for compound ${\bf 1}$

Au(1)-Se(1)	2.395(1)
Au(1)-Se(2)	2.390(1)
Se(1)-P(1)	2.174(1)
Se(2) - P(2)	2.173(1)
P(1)-C(111)	1.796(5)
P(1)-C(121)	1.801(4)
P(1)-C(131)	1.806(5)
P(2)-C(211)	1.806(5)
P(2)-C(221)	1.804(5)
P(2)-C(231)	1.812(4)
Se(1)-Au(1)-Se(2)	172.6(1)
Au(1)-Se(1)-P(1)	102.6(1)
Au(1)-Se(2)-P(2)	100.3(1)
Se(1)-P(1)-C(111)	104.6(2)
Se(1)-P(1)-C(121)	115.5(2)
C(111)-P(1)-C(121)	107.2(2)
Se(1)-P(1)-C(131)	111.9(2)
C(111)-P(1)-C(131)	109.9(2)
C(121)-P(1)-C(131)	107.5(2)
Se(2)-P(2)-C(211)	114.2(2)
Se(2)-P(2)-C(221)	105.1(2)
C(211)–P(2)–C(221)	106.9(2)
Se(2)-P(2)-C(231)	111.6(2)
C(211)–P(2)–C(231)	107.8(2)
C(221)-P(2)-C(231)	111.1(2)

intensities was measured to $2\theta_{max}$ 50°. An absorption correction was applied with DIFABS (transmissions 0.78–1.41). Cell constants were refined from setting angles of 50 reflections in the 2θ range 20–28°. Averaging equivalents gave 5038 unique reflections (R_{int} 0.026), of which 3732 with $F > 4\sigma(F)$ were used for all calculations (program system 'Siemens Shelxtl Plus').

Structure solution and refinement

As for compound 1, with the following differences: R 0.042, R_w 0.040, 334 parameters, g 0.0003, S 1.4, max. Δ/σ 0.003, max. $\Delta\rho$ 2.4 eÅ⁻³ near Sb. Final atomic coordinates are given in Table 3, with derived bond lengths and angles in Table 4.

See also 'Supplementary material'.

Preparation of $[(Ph_3PSe)_2Au][SbF_6]$ (1)

Ph₃PSe (682 mg, 1 mmol) and (tht)AuCl (tht = tetrathiophene; 321 mg, 1 mmol) are dissolved in 50 ml CH₂Cl₂/ether (3:2). After 1 h stirring, the solution is concentrated to 20 ml, and a solution of Ph₃PSe (682 mg, 1 mmol) in the same solvent is added together with 343 mg (1 mmol) solid AgSbF₆. After 1 h stirring, the solution is filtered through SiO₂/MgSO₄ and the product precipitated with ether. After recrystallisation from CH₂Cl₂/petrol, the yield

TABLE 3. Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement parameters $(\mathring{A}^2 \times 10^4)$ for compound 3

	x	у	z	Ueq
Au(1)	3606.9(4)	3563.0(4)	9009.5(3)	205(1)
Se(1)	5221(1)	5006(1)	8578.6(7)	275(3)
P(1)	4160(3)	5110(2)	7035(2)	234(8)
C(111)	3812(9)	3585(9)	6224(6)	204(30)
C(112)	2653(12)	3316(14)	5470(9)	572(51)
C(113)	2412(13)	2176(14)	4836(10)	652(55)
C(114)	3297(14)	1291(12)	4953(9)	517(49)
C(115)	4466(14)	1590(11)	5697(9)	519(51)
C(116)	4728(12)	2715(10)	6349(8)	386(39)
C(121)	2615(11)	5824(11)	7011(9)	415(43)
C(131)	5255(11)	6069(10)	6525(8)	374(40)
P(2)	2223(2)	2131(2)	9460(2)	192(8)
C(211)	3116(10)	1484(8)	10555(7)	246(32)
C(212)	2413(10)	1058(10)	11243(7)	298(35)
C(213)	3105(12)	513(11)	12028(7)	392(41)
C(214)	4470(12)	402(11)	12164(8)	435(43)
C(215)	5170(11)	857(10)	11505(8)	393(40)
C(216)	4501(10)	1412(9)	10711(8)	279(34)
C(221)	1709(9)	771(9)	8451(7)	231(31)
C(222)	1245(9)	- 379(8)	8662(7)	237(32)
C(223)	904(10)	- 1402(9)	7885(7)	312(36)
C(224)	983(10)	- 1284(9)	6915(7)	286(34)
C(225)	1416(11)	-146(10)	6701(7)	348(37)
C(226)	1800(10)	890(9)	7477(7)	262(33)
C(231)	697(9)	2680(8)	9773(6)	192(29)
C(232)	797(11)	3611(9)	10620(7)	284(34)
C(233)	-346(11)	4076(10)	10848(8)	348(38)
C(234)	-1602(11)	3609(10)	10233(8)	344(39)
C(235)	-1711(10)	2718(10)	9395(8)	325(37)
C(236)	- 547(10)	2243(9)	9156(7)	276(34)
Sb(1)	8699(1)	3224(1)	6247(1)	601(4)
F(1)	7935(9)	1878(7)	6717(6)	766(35)
F(2)	7168(9)	3102(16)	5193(8)	1673(81)
F(3)	7909(9)	4305(9)	7065(10)	1121(55)
F(4)	10256(7)	3389(6)	7279(4)	455(24)
F(5)	9500(11)	2063(17)	5465(7)	1791(83)
F(6)	9452(10)	4458(19)	5734(13)	2492(120)

^aEquivalent isotropic U defined as one third of the trace of the orthogonalised U_{ij} tensor.

is 920 mg of 1 as colourless crystals (83%); m.p. 221 °C (d). ³¹P NMR (CDCl₃, H₃PO₄ ext.): δ 32.36 ppm (s, with satellites from P–Se coupling, J_{P-Se} 548 Hz); ⁷⁷Se NMR (CDCl₃, Me₂Se ext.): δ -77.25 ppm (d, J_{P-Se} 547 Hz). *Anal.* Calc. for C₃₆H₃₀-AuF₆P₂SbSe₂: C, 38.8; H, 2.8; Au, 17.5. Found: C, 38.8; H, 2.7; Au, 17.7%.

Preparation of $[(Ph_3P)Au(SePPh_3)][SbF_6]$ (2)

Ph₃PAuCl (498 mg, 1 mmol) is dissolved in 50 ml CH₂Cl₂/ether (3:2) and stirred with 343 mg (1 mmol) AgSbF₆ in the dark for 1 h. After filtration through SiO₂/MgSO₄, a solution of 341 mg (1 mmol) Ph₃PSe in 10 ml CH₂Cl₂ is added to the filtrate. After 1 h

Au(1)-Se(1)	2.422(1)	Au(1)–P(2)	2.270(3)
Se(1)-P(1)	2.174(2)	P(1)-C(111)	1.813(9)
P(1)-C(121)	1.792(12)	P(1)-C(131)	1.792(12)
P(2)-C(211)	1.830(10)	P(2)-C(221)	1.825(9)
P(2)-C(231)	1.811(10)		
Se(1)-Au(1)-P(2)	175.8(1)	Au(1)-Se(1)-P(1)	99.1(1)
Se(1)-P(1)-C(111)	112.7(3)	Se(1)-P(1)-C(121)	111.6(4)
C(111)-P(1)-C(121)	109.4(4)	Se(1)-P(1)-C(131)	106.6(3)
C(111)-P(1)-C(131)	107.6(5)	C(121)-P(1)-C(131)	108.8(6)
Au(1)-P(2)-C(211)	110.9(3)	Au(1)-P(2)-C(221)	110.6(3)
C(211)-P(2)-C(221)	104.4(4)	Au(1)-P(2)-C(231)	116.4(3)
C(211)-P(2)-C(231)	106.8(5)	C(221)-P(2)-C(231)	107.0(4)

stirring, the solution is concentrated to 20 ml and the product precipitated with ether. Recrystallisation from CH₂Cl₂/ether gives 870 mg of **2** as white crystals (84%); m.p. 218 °C (d). ³¹P NMR (CDCl₃, H₃PO₄ ext.): δ 34.65 ppm (s, Ph₃PSe, satellites from P–Se coupling, J_{P-Se} 549 Hz), 38.3 ppm (s, Ph₃PAu); ⁷⁷Se NMR (CDCl₃, Me₂Se ext.): δ -97.45 ppm (d, J_{P-Se} 551 Hz). Anal. Calc. for C₃₆H₃₀AuF₆P₂SbSe: C, 41.7; H, 2.9; Se, 7.7. Found: C, 41.5; H, 3.0; Se, 7.6%.

Results and discussion

General methods of preparation of gold(I) cations $[LAuL']^+$ are well-known [4] and usually involve the reaction of a chlorocomplex LAuCl with a silver salt such as AgSbF₆ in the presence of the second ligand L'. The reaction with Ph₃PSeAuCl and Ph₃PSe proceeds smoothly to give the expected product $[(Ph_3PSe)_2Au][SbF_6]$ (1) in good yield. Similarly, $[(Ph_3P)Au(SePPh_3)][SbF_6]$ (2) can be obtained from Ph₃PAuCl and Ph₃PSe. The structure of 1 was determined by X-ray crystallography; 2 proved to be severely disordered (see above).

Attempts to prepare similar complexes using other phosphines and Ph₃PSe were essentially unsuccessful, but the results were nonetheless instructive.

The reaction between Me₂PhPAuCl, Ph₃PSe and AgSbF₆ led to considerable decomposition to metallic gold and an oily product. ³¹P NMR spectra indicated the presence of Ph₃PSe as the major species in solution (δ 35.6, J_{P-Se} 745 Hz), with a small amount of another species with δ 21.9 ppm. Fractional crystallisation yielded a small amount of a gold-containing product, which was characterised by X-ray methods (see below) as [(Ph₃P)Au(SePPhMe₂)]⁺[SbF₆]⁻ (3); the selenium atom has thus been transferred from one phosphine residue to the other.

The reaction between Et₃PAuCl, Ph₃PSe and AgSbF₆ also led to some decomposition to metallic

gold. After filtration, the solution was crystallised to yield at first unchanged Ph₃PSe. The remaining solution was evaporated to dryness. ³¹P NMR spectra of the residue indicated the presence of more free Ph₃PSe, plus a signal of approximately equal intensity with δ 54.8 ppm. J_{P-Se} 541 Hz. This signal does not belong to free Et₃P, Et₃PAuCl or [(Et₃P)_nAu]⁺ [5]; if we assume that P-Se coupling constants of *c*. 550 Hz are typical of the P-Se-Au moiety, then an as yet unknown gold-(phosphine selenide) complex must be present in solution. It is clear that the reactions and equilibria in solution are complicated; in future experiments, in particular NMR studies, we hope to resolve some of these problems.

The X-ray structure determinations of 1 and 3 both reveal the expected linear coordination at gold (Figs. 1 and 2), although slight deviations from ideal linearity are observed (Se-Au-P 172.6, 175.8°). No short Au...Au contacts are observed. The Au-Se

Fig. 1. The structure of compound 1 in the crystal. Radii are arbitrary; H atoms omitted for clarity. Two F atoms of the anion are eclipsed.

Fig. 2. The cation of compound 3 in the crystal. Radii are arbitrary; H atoms omitted for clarity.

bonds in 1 (2.390, 2.395 Å) are somewhat longer than in Ph₃PSeAuCl (2.371 Å) [3]). In 3 the Au-Se bond is longer still (2.422 Å), a typical value for Au(I)-Se *trans* to P [1, 6] and presumably due to the *trans* influence of the phosphine ligand. The P-Se bond lengths are all similar (2.173, 2.174 Å in 1, 2.174 Å in 3, 2.187(5) Å in Ph₃PSeAuCl [3]), as are the P-Se-Au angles (100.3, 102.6° in 1, 99.1° in 3, 100.1° in Ph₃PSeAuCl). The relative conformation of the ligands in 1 is described by the torsion angle P(1)-Se(1)...Se(2)-P(2) of 59°.

Supplementary material

Further details of the structure determinations (complete bond lengths and angles, H atom coordinates, structure factors, temperature factors) have been deposited at the Fachinformationszentrum Karlsruhe, Gesellschaft für Wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, Federal Republic of Germany. Any request for this material should quote a full literature citation and the reference number CSD54932.

Acknowledgements

We thank the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft for financial assistance, and Degussa for a gift of gold metal. X-ray data for 1 and 2 were collected at the Inorganic Chemistry Institute of the University of Göttingen.

References

- 1 P. G. Jones and C. Thöne, Chem. Ber., 123 (1990) 1975.
- 2 P. G. Jones and C. Thöne, Z. Naturforsch., Teil B, 46 (1991) 50.
- 3 M. S. Hussain, J. Crystallogr. Spectrosc. Res., 16 (1986) 91.
- 4 P. G. Jones, *Ph.D. Thesis*, University of Cambridge, 1976; P. G. Jones, A. G. Maddock, M. J. Mays, M. M. Muir and A. F. Williams, *J. Chem. Soc.*, *Dalton Trans.*, (1977) 1434.
- 5 M. J. Mays and P. A. Vergnano, J. Chem. Soc., Dalton Trans., (1979) 1112.
- 6 P. G. Jones, Gold Bull. 14 (1981) 102, 159; 16 (1983) 114; 19 (1986) 46.